
Faculty of Mathematics, Computer Sciences and Natural Sciences
Chair of Computer Science VIII (Computer Graphics and Multimedia)

Prof. Dr. Leif Kobbelt

Bachelor’s Thesis

Reconstruction of Depth Information
from Images for Visualisation of

Architectural Models

David Geier
Matriculation Number: 273862

August 2009

First referee: Prof. Dr. Leif Kobbelt
Second referee: Prof. Dr. Bastian Leibe

iii

I hereby affirm, that I composed this work independently and used no other than the
specified sources and tools and that I marked all quotes as such.

Aachen, the August 20, 2009

(David Geier)

iii

Contents

Contents v

1 Introduction 1
1.1 Motivation . 1
1.2 Shape-from-Shading . 2
1.3 Previous Methods . 3

1.3.1 Shape-from-Shading . 3
1.3.2 Rendering of Meso-Structure 4
1.3.3 Image Segmentation . 5

2 Depth Hallucination 7
2.1 Overview . 8
2.2 Image Acquisition . 9
2.3 Definition of an Image . 9
2.4 Albedo-Map and Diffuse Shading Image 10
2.5 Depth Estimation . 12

2.5.1 Gaussian Laplacian Pyramids 12
2.5.1.1 Gaussian Pyramid 13
2.5.1.2 Laplacian Pyramid 14
2.5.1.3 Simple Implementation 14

2.5.2 Mathematical Model . 16
2.5.2.1 Below-Plane Model 16
2.5.2.2 Above-Plane Model 17
2.5.2.3 Combined Model 18
2.5.2.4 Multiscale Formulation 19
2.5.2.5 Advantages and Disadvantages 20

2.6 Examples . 21
2.7 Histogram Matching . 21

2.7.1 Histograms . 22
2.7.2 Histogram Specification . 22
2.7.3 Algorithm . 23
2.7.4 Example . 24

v

vi Contents

3 Image Segmentation 27
3.1 Motivation . 27
3.2 Definition of Image Segmentation 27
3.3 Graph-Cut . 28

3.3.1 Overview . 28
3.3.2 Graph Construction . 29
3.3.3 Flow of a Graph . 29
3.3.4 Maximum Flow and Minimum Cut 30
3.3.5 Flow Algorithms . 30
3.3.6 Energy Functions . 31

3.3.6.1 Data Term . 32
3.3.6.2 Interaction Term 33

3.3.7 Expanding to Multiple Segments 34
3.3.8 Summary . 34

4 Implementation 35
4.1 Used Libraries . 35
4.2 Compilation . 36
4.3 Algorithms . 36

4.3.1 Depth Hallucination . 36
4.3.2 Graph-Cut Segmentation . 36

4.4 Visualisation . 37
4.4.1 Relief Mapping . 38

5 Evaluation 41
5.1 Depth Hallucination . 41

5.1.1 Well Working Examples . 41
5.1.2 Problems and Limitations 43
5.1.3 Reconstruction of Facades 44
5.1.4 Performance . 46

5.2 Histogram Matching . 47
5.3 Image Segmentation . 49

6 Closing Words 51

Bibliography 53

vi

Chapter 1

Introduction

1.1 Motivation

The Chair of Computer Science 8 (computer graphics and multimedia) of the RWTH-
Aachen is working on a project, which aims at the creation of a photo-realistic virtual
walk-through of the city of Aachen. This project is called the Virtual Aachen Project.
A major job is to create renderings, which are as detailed and realistic as possible.
For a realistic visualisation detailed reconstructions of the facades of the buildings are
needed. Facades contain lots of small indentations and elevations (so called meso-
structure), which have to be modelled to achieve a realistic and satisfying rendering.
When introducing more and more details it is important, that the rendering speed does
not suffer. One way to achieve an increase in richness of detail is to use more polygons
for the geometry of the architectural models. This intuitive approach can be realised
easily (e. g. by using a laser scanner to fully reconstruct the model), but the problem
is that a higher polygon count directly results in lower rendering speed. Next to the
problem of how to render this meso-structure as efficiently as possible, another issue
is the acquisition of meso-structure information from real world, which has to be as
easy and convenient as possible.

Today there are already some methods for rendering highly detailed mesh surfaces, that
do not need extra triangles to model these details (e. g. parallax mapping [KTI+01]
or the newer relief mapping [PNC05]). All these techniques are based on a depth-map
of the surface, which is used to perform a per-pixel adjustment of the texture coor-
dinates or normals. So the problem of visualising meso-structure is already solved.
The issue we still have is how to obtain depth-maps of a building’s surface as con-
veniently as possible. So far, the depth-maps in the Virtual Aachen Project, which
are basically nothing more than greyscale 2D images, were drawn by hand. This ap-
proach is very time-consuming and the final result might not survive the scrutiny of
those expecting real-world simulations. In late 2008 a new technique has been de-
veloped by researchers at the Manchester’s School of Computer Sciences and Dolby

1

2 Chapter 1. Introduction

Figure 1.1: Screenshot of the Virtual Aachen Project city viewer

Canada [GWM+08]. They presented a technique called depth hallucination, which is
supposed to make capturing depth information from 3D surfaces as easy as taking two
pictures with a digital camera.

Hence the goal of this thesis is to analyse this new technique in regard to the applica-
bility in the Virtual Aachen Project. Additionally, a tool has to be implemented which
can be integrated into the content generation pipeline to easily create depth-maps based
on photographs. These depth-maps will be later used for rendering a highly detailed
visualisation of the city.

It turned out, that the depth hallucination algorithm has problems in some regions of
certain images, which are important to be processable for the Virtual Aachen Project.
Thus additionally an image segmentation algorithm is implemented to provide a user-
friendly way for segmenting the input image into different regions. Then the user can
decide in which regions depth estimation should be used, and which regions should
get a constant depth, if the algorithm does not work there.

1.2 Shape-from-Shading
Shape recovery is a classical problem in computer vision. It basically means recon-
structing information about the 3D structure of a scene from one or more 2D images.
The problem is of course the transition from 2D to 3D, based on just two-dimensional
information. The extracted 3D shape can be represented in several ways, for example
by using depth values D(x,y) (which can be interpreted as relative distances from the
camera). There are some more representations, which are not shown here, because they
are irrelevant for the remaining thesis. For more information, have a look at [ZTCS99].

2

1.3. Previous Methods 3

Methods for recovering shape from images are called differently, depending on the
kind of input images a certain method requires. Examples are shape-from-motion,
stereo or shading. The depth hallucination technique can be classified as a shape-from-
shading method. Shape-from-shading deals with the recovery of shape from a gradual
variation of shading in the input image(s). Therefore it is essential to study how these
images were formed physically, and to use this information to create a model for the
shape recovering process. Furthermore, an important aspect is to exploit human limi-
tations in the ability to correctly interpret depth and lighting. These limitations can be
used to simplify the algorithms and, at the same time the amount and detail needed for
the input images. Shape-from-shading has the advantage, that no special equipment is
needed for capturing the images, because just normal photographs are used.

1.3 Previous Methods
In this section previous methods of all algorithms used in this thesis are presented. The
main focus is on shape-from-shading as the fundament of depth hallucination. Image
segmentation and rendering algorithms are only touched, because they are just used as
tools in this thesis.

1.3.1 Shape-from-Shading
In the Virtual Aachen Project various shape reconstruction methods are used. This
makes the content generation process a lot more convenient and less time consum-
ing. The landmark paper in this area is from Debevec et al. [DTM96]. They propose
a technique for modelling and rendering architectural scenes from a sparse set of still
photographs. However surface meso-structure is mostly not taken into account in these
kinds of models. Nevertheless this information is essential to achieve a realistic ren-
dering of surfaces.
There are already methods existing to recover meso-structure, but they expect sets of
images as input and/or require special equipment for image acquisition. The tech-
nique of Yu et al. [YDMH99] needs a geometric model of the scene and a set of high
dynamic range photographs, taken with known direct illumination, as input. The tech-
nique of Ngan and Durand [ND06] requires a handheld wireless flash as light source.
Then a set of images with the flash at different positions have to be captured. Paterson
et al. [PCF05] propose a technique, where a set of photographs has to be taken as
well, but this time calibration objects have to be placed in the scene for later object
registration and to ensure that the light position is known for every captured image. As
last example the technique of Li et al. [LFTW05] requires a gonioreflectometer1. It
is obvious, that the acquisition steps of the presented methods are so complicated and

1A gonioreflectometer is a device for measuring reflectivity of a material. In most cases the
bidirectional reflectance distribution function (BRDF) is delivered.

3

4 Chapter 1. Introduction

time-consuming, that something easier is needed.

Classical shape-from-shading methods try to extract 3D depth information just from
one single input image. Using just one single image makes the problem under-determined,
because not enough information is available to uniquely extract depth. Numerous
shapes, surface reflectances and lighting conditions can give rise to the same shad-
ing pattern and associated ambiguities in shape perception. As already mentioned,
exploiting our limitations in correctly interpreting depth and lighting is important. Os-
trovsky et al. [OCS05] showed, that humans are quite insensitive to inconsistencies
of illumination directions in many real world scenes. The approach by Langer and
Bülthoff [LB00], is based on the hypothesis, that shape perception can be explained
using a ”dark-means-deep“ perceptual model. Khan et al. [KRFB05] picked up this
approach and successfully showed how to replace one material with another in an im-
age by only using one high dynamic range photograph as input.

The depth hallucination method is to some extent similar to the method of Langer and
Zucker [LZ94]. Their model is especially designed for capturing shape-from-shading
on a cloudy day. They observed that under diffuse lighting conditions, such as the sky
on a cloudy day, surface brightness depends primarily on the amount of sky, visible
from each surface element. This assumption is the basis of the mathematical model,
used in the depth hallucination algorithm. However in comparison to their method the
depth hallucination technique is a lot faster, because the used model is simpler and
fewer constraints are imposed.

1.3.2 Rendering of Meso-Structure
Improving scene realism by using texture mapping is an fundamental component of
modern rendering systems. It adds significant amount of detail to the scenes by sim-
ulating the appearance of different materials. In 1976, Blinn and Newell mapped first
images over surfaces to create the illusion of detail without adding geometry [BN76].
Over the time a few texture mapping extensions have been developed, which further
try to increase the realism of the rendered scenes.

Bump-maps allow flat surfaces to have not only the colour, but the appropriate shading
of the perceived detail geometry by using additionally information about the normals
[Bli78, Coo84]. Relief textures, introduced by Oliviera and Bishop [OBM00], are a
technique for pre-distorting textures based on depth information. Although this tech-
nique was not practicable enough to get into industry, the idea was picked up later
for parallax mapping and relief mapping. Kaneko et al. [KTI+01] introduced par-
allax mapping, which for the first time allowed efficient self-occlusion and parallax
effects for bump mapped surfaces. Welsh first implemented parallax mapping on a
programmable GPU [Wel04]. Today parallax mapping is almost as efficient as plain
texture mapping on modern GPUs, but appears a lot more realistic than bump mapping

4

1.3. Previous Methods 5

alone. Relief texture mapping on arbitrary polygons, as presented by Policarpo et al.
[PNC05], is the latest technique for rendering highly detailed surfaces in real-time,
without introducing new geometry. It yields the best visual results, but is the slowest
technique at the same time. I chose this technique for visualisation in the tool, because
image quality is a lot more important than speed.

1.3.3 Image Segmentation
For separating images into different regions a big number of different algorithms with
different approaches exist. They range from quite simple, pixel-based to complex,
model-based approaches. Basically the algorithms can be classified into pixel-, region-
, edge-, model-, texture- and graph-partitioning-based approaches, which are shortly
presented in the following.

Pixel-based Methods Here the classification of segment membership of a pixel is
exclusively based on its intensity. The pixel’s local neighbourhood is not taken
into account. Pixel-based methods are simple to implement and fast, but do not
yield coherent segments in most cases [N.79].

Region-based Methods In comparison to pixel-based methods, region-based meth-
ods take the local neighbourhood of a pixel to classify into account. A set of so
called seed points is required as hint which pixels belong definitely to a certain
segment. Starting from these seed points, the algorithm grows the segments.
Thus coherent segments are formed [SS01, WF06].

Edge-based Methods Edges often match the contours of the searched segments. Hence
discontinuities between image regions can be used for segmentation. A prob-
lem is that most existing techniques do not return closed regions. Thus a post-
processing step is nearly always needed, in order to get closed segments [PzG05].

Model-based Methods So far all approaches are only based on local image informa-
tion. Model-based approaches introduce a model of the searched objects for
segmentation (e. g. the geometrical shape of the objects, which are assumed to
appear in the input image). So previous knowledge about the content of the
images is used and needed for segmentation [KKH+93].

Texture-based Methods Often segments are not characterised by a colour, but by a
consistent structure (texture). Texture-based methods try to use these structural
information for segmentation [WHMM06].

Graph-partitioning-based Methods Graphs from graph theory can be effectively
used for image segmentation. The pixels of an image are transformed into
the graph’s nodes. The edge weights describe the (dis)similarity among the
neighbourhood pixels. Then graph cutting techniques are used to partition the

5

6 Chapter 1. Introduction

nodes of the graph into two disjoint sets, which represents the image’s segments
[GPS89, FH04].

I decided to use a graph-partitioning-based method for segmentation. The reasons for
my choice are given in chapter 3.

6

Chapter 2

Depth Hallucination

In this chapter the algorithm ”A Perceptually Validated Model for Surface Depth Hal-
lucination“ [GWM+08], presented at SIGGRAPH 2008 is described in detail. First of
all an intuitive explanation and a coarse overview of the algorithm is given. This makes
it easier to understand the inner workings. After that, all steps of the depth estimation
process are explained in detail.

The depth hallucination method expects three photographs as input. The first pho-
tograph is captured without flash under diffuse illumination. Using just this single
image for depth estimation would not be enough, because the assumption that portions
of the surface that are higher appear brighter, whereas portions that are deeper appear
darker, does not hold in general. The problem with this assumption is that different
materials of a surface also reflect light differently. This fact makes it impossible to de-
cide, if the brightness difference between two portions (e. g. between two pixels) is a
function of colour or a function of depth. By capturing a second photograph, this time
with flash, the surface reflectance behaviour, also known as surface albedo1 can be
calculated. Using this information, the colour of all visible portions of the surface can
be captured. The third photograph is a white balance image (flash calibration image).
It is taken of a white Lambertian2 surface (e. g. a white sheet, stretched over a frame)
at a similar distance and aperture like the other two pictures and is used for vignetting
falloff compensation.

In the algorithm, the two images captured first, essentially become a reflectance map
(albedo-map) and a depth shading image. Then, for every matching pair of pixels

1The albedo (derived from Latin albedo = ”whiteness“, or albus = ”white“) is a measure for the
extent, to which a surface diffusely reflects light from the sun. It is therefore a more specific form of
reflectance.

2A Lambertian surface has a perfectly diffuse (matte) material. The intensity of light, which is
reflected in a given direction from any small surface element, is proportional to the cosine of the angle
of the normal to the surface. This is known as Lambert’s Cosine Law. An important consequence is,
that a Lambertian surface always has the same brightness, regardless of the viewing direction [McC05].

7

8 Chapter 2. Depth Hallucination

Flash‐lit Image

Diffuse‐lit Image

Albedo Image

Diffuse Shading Image Depth Map

Laplacian Image 1

Laplacian Image 2

Laplacian Image n

Input Images Estimated Images Temporary Images Estimated Depth Map

(Result)
Histogram‐matched

flash‐lit Image

Figure 2.1: Algorithm flow chart and relationship between involved images

from these two images it is calculated how much of the pixel’s brightness depends on
its depth, and how much is due to its colour.

2.1 Overview
In figure 2.1 an overview of the algorithm together with all used images is shown. The
individual steps are: taking photographs, histogram-matching (if required), estimation
of albedo-map and diffuse shading image, building a Laplacian pyramid of the diffuse
shading image, and finally the depth estimation. All steps are described in detail and
illustrated using a sample picture pair in the following sections.

For simplifying the mathematical model used for depth estimation later on the fol-
lowing assumptions are made.

1. The surface to reconstruct is approximately Lambertian and opaque with an
average reflectance ρ between 2% and 70%. Further, the surface’s materials
shouldn’t have any specularities. If it contains significant specularities, cross-
polarisation3 can be used to minimise highlights [Her].

2. The underlying surface must be plausibly representable as a height field and is
without global curvature (like a floor or a wall).

3. A shading change over a small region in general corresponds to a smaller change
in depth, than the same shading change over a large region. This is assumed,
because in nature very small indentations with a very high depth are rarely found.

4. Under diffuse lighting conditions (such as the sky on a cloudy day), surface
brightness depends primarily on the amount of sky visible from each surface
element [LZ94].

3Cross-polarisation can be used to remove reflections from photographs, originated by the flash.
This is done by using polarising filters for the camera’s meter on the lens and flash heads.

8

2.2. Image Acquisition 9

(a) Photograph under diffuse condition (b) Photograph taken with flash

Figure 2.2: Example input photograph pair

2.2 Image Acquisition

Before the hallucination algorithm actually can be executed, the input pictures have
to be taken. In the paper a standard digital SLR (Single-Lens Reflex) camera is sug-
gested, which I used too, to take all test pictures. The camera is ideally mounted on a
tripod (to avoid camera shakes) and perpendicularly orientated towards the surface (to
avoid perspective distortions).

First the diffuse-lit image is captured under indirect illumination, e. g. under an over-
cast sky or in shadow. Next the flash-lit image is captured, with the flash fired at full
power and the camera staying at the same position. Ideally the flash is as close as
possible to the camera lens to minimise shadows. All images used in this thesis were
captured using a standard flash mount. In figure 2.2 a diffuse/flash image pair is shown,
which will be used to visualise the algorithm in the next sections. The pictures show a
bumpy cobblestone pavement.

2.3 Definition of an Image

In the following sections a lot of operations on two-dimensional greyscale and colour
images are performed. Therefore it is essential to give a precise mathematical model of
images and their operations first. Images can be interpreted as matrices of pixels. De-
pending on the number of channels (mostly 1 for greyscale and 3 for colour images),
each matrix entry has a different number of values, represented as n-dimensional vec-
tors. The vector components model the different channels of a pixel. The following
definitions formalise images:

9

10 Chapter 2. Depth Hallucination

G = [0,1]⊂ R set of continues greyscale values between 0 and 1
w,h,c ∈ N width, height, number of channels of the image
s = w ·h,s ∈ N total number of pixels (size) of the image
x ∈ {1, . . . ,w} x-coordinate of a pixel
y ∈ {1, . . . ,h} y-coordinate of a pixel
(x,y) coordinate of a pixel in the image matrix
I = (i(x,y,c)) image matrix
i(x,y) = g = (g1, . . . ,gc)T ∈ Gc intensities of channels of pixel at (x,y)

For example a greyscale image can be defined as I = (i(x,y,1)), and a RGB colour
image can be defined as I = (i(x,y,3)). With exact reference to the mathematical no-
tation of matrices (e. g. A = (ai, j)) the row and column counter x,y should be written
as indices sx,y. I deviate from this notation here, because sometimes it is convenient to
be able to consider a pixel value at (x,y) as a function value. The mathematical model
above is partly adopted from [NFH07].

Next some operators on images are defined, which will be used later on. The greyscale
value of a pixel g = i(x,y) from a RGB image I = (i(x,y,3)) can be calculated as a
weighted sum4 of the red (g1), green (g2), and blue (g3) channel:

grey : G3→ G,g 7→ 0.3g1 +0.59g2 +0.11g3 (2.1)

In many image processing calculations it can happen, that pixel values overflow or
underflow, which means for a pixel’s channel: gi /∈ [0,1]. To clamp the pixels in
the correct range a so called saturation function is defined, which makes use of the
following clamping function.

clamp : R→ R,x 7→


0, x < 0
x, 0≤ x≤ 1
1, x > 1

saturate : Rc→ Gc,g 7→ (clamp(g1), . . . ,clamp(gc))T (2.2)

2.4 Albedo-Map and Diffuse Shading Image
After the image acquisition first of all the input photographs have to be converted to
linear, floating-point pixel values in the range of [0,1] = G. Further it is required, that
all three images have the same width and height.

4The weights are chosen like this, because the eye is most sensitive to green, then to red and lastly
to blue. For example, for equal amounts of blue and green light, the green light will nevertheless seem
much brighter. By using different weights for the different channels, the produced greyscale image’s
brightness is perceptually equivalent to the brightness of the original image.

10

2.4. Albedo-Map and Diffuse Shading Image 11

Next, the albedo-map Ia = (ia(x,y,3)) is calculated. This is done by a pixel-wise
subtraction of the diffuse-lit image Id = (id(x,y,3)) from the flash-lit image I f =
(i f (x,y,3)) and a subsequent, pixel-wise division by the white balance calibration im-
age Ic = (ic(x,y,3)). Dividing by the white-balance image is used for vignetting falloff5

correction. This yields approximate reflectance values at each pixel.

ia(x,y) =
i f (x,y)− id(x,y)

ic(x,y)
(2.3)

Finally, the albedo-map has to be channel-wise normalised to the brightness of the
diffuse image. This is required, because in general the albedo-map is quite dark and
later on a weighting between the albedo-map and the diffuse image is calculated. This
weighting does not work if the colour values differ too much.
For the normalisation first the mean pixel intensity of each channel of the albedo-map
and the diffuse image has to be computed. This is done by channel-wise dividing the
sum of all pixel intensities by the number of pixels (image size). Given an image
I = i(x,y,c) the channel-wise mean colour can be defined as

mean : I→ Rc, i(x,y) 7→ 1
si

(
wi

∑
x=1

hi

∑
y=1

i(x,y)

)
.

Next, the normalisation it-self is applied. By first subtracting the mean value mean(ia)
from the albedo-map the image is made zero-mean. After that adding mean(id) shifts
the mean to the mean of the diffuse image.

ia(x,y) = saturate(ia(x,y)−mean(ia)+mean(id)) (2.4)

It is important to note, that the albedo-map is updated in this step and no new image is
created. In figure 2.3 the resulting albedo-map for the cobblestone pavement is shown.

Now, the diffuse shading image Is = (is(x,y,1)) is calculated. It describes how much of
a pixel’s brightness is due to its position and how much is due to its colour. This calcu-
lation is based on the assumption, that with increasing depth reflectivity decreases. For
the diffuse shading image it is enough to only use the luminance channel, because the
final depth-map will be greyscale. The diffuse shading image is calculated by pixel-
wise dividing the greyscale values of the diffuse-lit image by the greyscale values of
the albedo-map.

Is =
grey(id(x,y))
grey(ia(x,y))

(2.5)

This can be interpreted as a weighting of the diffuse colour of a pixel by its reflectivity.
This way, e. g. a dark pixel with high reflectivity (low albedo) gets a high value and a

5In photography and optics, vignetting means a gradual darkening of the image towards the corners,
compared to the centre [ZLK06].

11

12 Chapter 2. Depth Hallucination

(a) Estimated albedo-map (b) Estimated diffuse shading image

Figure 2.3: Example albedo-map and diffuse shading image, generated from the im-
age pair shown in figure 2.2

bright pixel with low reflectivity (high albedo) gets a small value. Using the mathemat-
ical model presented later on, these depth shading values are transformed into actual
depth estimates. The diffuse shading image still has to be normalised to a mean value
of 0.5, because the depth estimation method described in the next section assigns a
height of 0 to a pixel intensity of 0.5. The normalisation is done in the same way as
described above for the albedo-map. The only difference is that the diffuse shading
image is normalised to a mean value of 0.5, and just one channel has to be considered,
because the image is greyscale. Figure 2.3 shows the estimated and normalised diffuse
shading image for the cobblestone pavement sample.

2.5 Depth Estimation
Based on the previously calculated albedo-map and diffuse shading image the depth-
map can be estimated. The estimation process is based on a mathematical model,
which will be derived in this section. However at first Gaussian Laplacian pyramids
are presented, because they play an important role in the depth estimation process later
on.

2.5.1 Gaussian Laplacian Pyramids
Sharpness and blurring are characteristics of digital images. They can be used to recog-
nise structures in an image, or to manipulate it. Sharpness and blurring is represented
by the different frequency bands of an image. With the Fourier transformation such
a frequency decomposition can be calculated, but this has some drawbacks. First, the
computational costs of this method are very high. Second, after the Fourier transfor-
mation the different frequency components in frequency space can be identified, but

12

2.5. Depth Estimation 13

Figure 2.4: Visualisation of a Gaussian pyramid with three example levels

a direct mapping to structures in local area (image space) is missing. A Gaussian
Laplacian pyramid can be used, to efficiently extract the frequency bands from a dig-
ital image. Additionally, it yields a direct mapping to structures in local area. The
algorithm was first presented by Burt and Adelson in 1983 [BA83].

2.5.1.1 Gaussian Pyramid

To construct a Gaussian Laplacian pyramid, first a Gaussian pyramid has to be con-
structed. The input image I = (i(x,y,c)) has to be quadratic, so that halving the image
size does not yield fractions. This means for the width and height: w = h = 2r,r ∈ N.
The first pyramid level G0 is set to the input image I. The next pyramid level G1 is
calculated, by low-pass filtering and halving the previous level G0. This is called the
REDUCE operation. For a filter kernel w(x,y) of dimension 5× 5 and a reduction
factor of four, the following REDUCE operation is often used:

REDUCE(I)(x,y) =
2

∑
i=−2

2

∑
j=−2

w(2+ i,2+ j) · I(2x+ i,2y+ j)

These two steps are repeated level by level, until an image size of 1×1 is reached.

G0 = I
Gi+1 = REDUCE(Gi), i = 0 . . .r−1

This process results in a series of images, where each image represents a certain fre-
quency portion of the input image and each successor image is 1

4 smaller than its pre-
decessor image [Jäh05, NFH07]. Figure 2.4 shows a Gaussian pyramid6 with levels
G0,G1 and G2.

6The pyramid image was taken from http://fourier.eng.hmc.edu/e161/lectures/figures/
Image_Pyramid.gif.

13

http://fourier.eng.hmc.edu/e161/lectures/figures/Image_Pyramid.gif
http://fourier.eng.hmc.edu/e161/lectures/figures/Image_Pyramid.gif

14 Chapter 2. Depth Hallucination

2.5.1.2 Laplacian Pyramid

Next, the Laplacian pyramid is constructed. It is build by subtracting adjacent Gaus-
sian pyramid levels. This is also known as the DoG algorithm (Difference of Gaussian).
A problem is that two adjacent levels of a Gaussian pyramid do not have the same
size. So before subtraction the smaller image (the higher pyramid level) has to be up-
sampled. The missing rows and columns are interpolated. This is called the EXPAND
operation, which is the inverse of the REDUCE operation. The EXPAND operation
can be applied multiple times, so that every pyramid level can be expanded to the size
of the original image. This can be formalised in the following way:

Gi,1 = EXPAND(Gi,0), with Gi,0 = Gi, i = r,r−1, . . . ,1
Gi,2 = EXPAND(Gi,1)
. . .

Gi,i = EXPAND(Gi,i−1)

The images G1,1,G2,2, . . . ,Gr,r are expanded to the size of the input image I. In the
levels of a Laplacian pyramid, those image information are saved, which got filtered
out by the REDUCE operation in a Gaussian pyramid. For a filter kernel w(x,y) of
dimension 5× 5 and a reduction factor of four, the following EXPAND operation is
often used:

EXPAND(I)(x,y) = 4
2

∑
i=−2

2

∑
j=−2

w(2+ i,2+ j) · I
(

x+ i
2

,
y− j

2

)
The Laplacian pyramid levels Li are then calculated like that:

Li = Gi−EXPAND(Gi+1) = Gi,0−Gi+1,i, i = 0,1, . . . ,r−1
Lr = Gr

The top of the Laplacian pyramid Lr was set to the top of the Gaussian pyramid Gr,
because one image is missing for subtraction in the last pyramid level. In figure 2.5, the
construction of a Laplacian pyramid, based on a Gaussian pyramid, is shown [Jäh05,
NFH07].

2.5.1.3 Simple Implementation

For a practical implementation two requirements of the depth hallucination algorithm
have to be considered. First, the input image G0 can have an arbitrary size, which
may not be a power of two, or the image’s width and height are different. Second, a
Laplacian pyramid is required, which consists of equally sized levels.
To efficiently create such a Laplacian pyramid with n levels, I use the following algo-
rithm. First, create n + 1 Gaussian blurred copies of the input image, by successively
increasing the blurring radius r by powers of three. After that, subtract adjacent levels
to get a Laplacian pyramid with n equally sized levels. In listing 2.1, the algorithm is
shown.

14

2.5. Depth Estimation 15

-

-

... ...

EXPAND

EXPAND

REDUCE

REDUCE

Figure 2.5: Construction of a Laplacian pyramid from a Gaussian pyramid

1 image[n] laplacianPyramid(image img, int n)
2 {
3 image gaussPyr[n+1];
4 image laplacePyr[n];
5
6 gaussPyr[0] = img;
7
8 for (int i=3,r=1; i<n; i++) do
9 {

10 gaussPyr[i] = blurRxR(img, r);
11 laplacePyr[i-1] = gaussPyr[i-1]-gaussPyr[i];
12 r = r*3;
13 }
14
15 return laplacePyr;
16 }

Listing 2.1: Algorithm for constructing an equally sized Laplacian pyramid of an
arbitrarily sized image

15

16 Chapter 2. Depth Hallucination

Above-plane surface model is used here

Below-plane surface model is used here

Figure 2.6: Profile of a surface height field and the separation between the above-plane
and below-plane model

2.5.2 Mathematical Model

In the following sections a mathematical model is derived, which describes depth de-
pending on the depth shading factors from the diffuse shading image. The depth esti-
mation works pixel-wise and entirely in image space.

Surface meso-structure can be modelled as a terrain with hills and valleys, with both
having different amounts of incident light. The orientation to the sky dominates on the
hills, while the visible aperture effect dominates in the valleys. In the valleys at least
the hillsides are partly in shadow.
Due to the distinction between hills and valleys first two different models are derived
to approximate the different types of relationships between depth and shading. The
scope of each model is shown on a hypothetical surface in figure 2.6. The transition
between the two models is a zero-plane, where depth is assumed to be 0. Above this
plane the above plane model and below this plane the below plane model is used. Later
these two models are combined into one. The derivation of both models is based on
the assumption, that under diffuse lighting (like on a cloudy day) depth at a surface
element mainly depends on the amount of incident light [LZ94].

2.5.2.1 Below-Plane Model

The below plane model is based on approximating pits in the surface as cylinders
with aperture 2a and depth d. See figure 2.7(b) for an illustration. Interreflections are
ignored, because they would complicate the model a lot. Further, interreflections just
seem to affect the scale, but not the character of the depth approximation.
First, the amount of light Ec(θ), which is incident to the cylinder, depending on the
angle of aperture θ, has to be determined. Ec(θ) is calculated by integrating the cosine
weighting over the solid angle subtended by the visible sky:

Ec(θ) = 2π

∫
θ

0
cosθ

′ sinθ
′dθ
′ = 2π

sin2
θ

2
= πsin2

θ

16

2.5. Depth Estimation 17

�

�

(a) Above-plane model using hemispheres

2�

�

2�

�

(b) Below-plane model using
cylinders

Figure 2.7: Model for approximating pits and surface protrusions

The integral is solved using integration by parts:∫
sinxcosx = sin2 x−

∫
cosxsinx

⇔2
∫

sinxcosx = sin2 x

⇔
∫

sinxcosx =
sin2 x

2

To arrive at the final shading factor S, Ec(θ) is divided by the illumination factor for the
full sky Eh, which is Eh = Ec(90◦) = π. Using sinϕ = opposite leg of ϕ

hypotenuse of ϕ
and Pythagoras’

theorem, the shading factor finally becomes:

S =
Ec(θ)

Eh
=

πsin2
θ

π
= sin2

θ =
(a

h

)2
=

a2

a2 +d2 (2.6)

Pit depth can therefore be estimated by solving equation (2.6) for depth d as (see
figure 2.8 for the function graph):

d = a

√
1
S
−1 (2.7)

2.5.2.2 Above-Plane Model

The above-plane model uses hemispheres to model surface protrusions. Shading of
these is a function of the visible portion of the hemisphere hv, subtended by the angle
ψ and added to the remaining reflected portion of the hemisphere hr outside this angle.
See figure 2.7(a) for an illustration. This sum is finally divided by the illumination
factor for the full sky, which was already shown in the derivation for the below-plane

17

18 Chapter 2. Depth Hallucination

model to be π.

In the following ρ is the surrounding surface reflectance, which is assumed to be 0
in both models. However, it is included in the derivations for completeness.

hv(ψ) =
π

2
(1+ cosψ)

hr(ψ) = ρ
π

2
(1− cosψ)

As already said, the shading factor S is calculated as the sum of these two functions,
divided by π:

S =
hv(ψ)+ρhr(ψ)

π
=

π

2 (1+ cosψ)+ρ
π

2 (1− cosψ)
π

Next, this equation is simplified and solved for cosψ, which gives:

π
2
π

S = 1+ cosψ+ρ−ρcosψ

⇔ 2S = (1−ρ)cosψ+1+ρ

⇔ 2S−1−ρ

1−ρ
= cosψ (2.8)

Looking at image 2.7(a) and using cosϕ = adjacent leg of ϕ

hypotenuse of ϕ
it can be derived, that

cosψ =
R−d

R
, (2.9)

where R is the radius of the hemispherical hill. Substituting the term cosψ in equa-
tion (2.9) with equation (2.8) gives the following linear model (see figure 2.8 for the
function graph):

2S−1−ρ

1−ρ
=

R−d
R
⇔ −2RS +R+ρR

1−ρ
+R = d =

−2RS +R+ρR+R−ρR
1−ρ

=
R(−2S +2)

1−ρ
⇔ 2R

1−S
1−ρ

= d (2.10)

2.5.2.3 Combined Model

The previously derived below-plane and above-plane model from equations (2.7) and
(2.10) now have to be combined into one single model. First, the transition between
both models is calculated as the intersection of both models. By substituting S = 1

2 (as
the zero-plane where height is 0) and solving for a, the result is:

2R
1−S
1−ρ

= a

√
1
S
−1⇔ R

1−ρ
= a (2.11)

18

2.5. Depth Estimation 19

Figure 2.8: The graph of the function D(S), which describes the depth depending
on the shading factor S. The dashed lines show the unused parts of the above- and
below-plane model.

As already said, the surrounding surface reflectance ρ is assumed to be 0. Therefore,
the diffuse shading S, at each scale a (which describes cylinder aperture or hemisphere
radius), can be calculated using the following, combined aperture formula:

D(S) =
d
a

=

{√
1
S −1, S≤ 1

2

2(1−S), S > 1
2

(2.12)

The function graph of the final depth estimation function D(S) is shown in figure 2.8.

2.5.2.4 Multiscale Formulation

The combined depth model is not enough to obtain good looking results when estimat-
ing depth. The reason is that a shading change which occurs over large region, mostly
corresponds to a greater change in depth than the same shading change over a small
region.

Since the models derived previously estimate depth from shading relative to a specific
feature size a, each scale in the diffuse shading image has to be considered separately.
The previously described Laplacian pyramids with the shown implementation are used
to separate the diffuse shading image into differently scaled layers. This converts the
aperture estimates into depth estimates. The number of pyramid levels N is a user-
defined constant, which depends on the image content. It reflects the level of detail

19

20 Chapter 2. Depth Hallucination

Figure 2.9: In the top row the Laplacian pyramid levels L2, L3 and L4 are shown. In
the bottom row some depth-maps using 3, 4 and 5 pyramid levels are shown.

of the final depth-map. The final depth d(x,y) is obtained by using the depth function
from equation (2.12) and solving for d. The aperture a is replaced by the blur radius r
at each level. The resulting formula is

d(x,y) =
N

∑
i=1

ri · (D(Ii
p(x,y))−1), (2.13)

where Ii
p is the pyramid image at level i. It should be noted that in this equation depth

units correspond to a pixel’s width and have to be scaled accordingly. Further 1 is
subtracted from the computed depths, because the diffuse shading image is normalised
to a mean value of 0.5 and D(S = 0.5) = 1 is the depth at this average intensity. Con-
sequently, subtracting 1 makes the average surface displacement to be zero.

Another point concerning the implementation is that the outputted depth-maps are in-
verted in the sense, that high depth values correspond to bright colours, and low depth
values correspond to dark colours. In the implementation there is the possibility to
invert the depth-maps. I did this, because on the one hand I think ”the brighter the
higher“ depth-maps are more intuitive, and on the other hand, the later presented relief
mapping algorithm, used for visualisation, requires such depth-maps in its current im-
plementation. In figure 2.9 different levels of a Laplacian pyramid are shown together
with some depth-maps using different numbers of pyramid levels.

2.5.2.5 Advantages and Disadvantages

The combined depth formula is very compact and fast to evaluate. In comparison
to previous methods like [LZ94], no computational complex formulas or ray-tracing

20

2.6. Examples 21

(a) Diffuse image (b) Flash image (c) Depth-map

Figure 2.10: Rock wall example

schemes have to be approximated. However, the depth formula is of course a trade-off
between simplicity and functionality. A more complex model will result in a more dif-
ficult formula, which may be more accurate in some situations, where the modelling
of hills as hemispheres and valleys as cylinders may be insufficient. In many surfaces
found in nature, valleys appear as crevices and hills as rough peaks. In such cases
the presented model would not fail completely, but the results would not be as good
as when using a more elaborate or customised model. Further, overhangs in surfaces
cannot be reconstructed at all using the presented model. Here not only the model has
shortcomings, but the input photographs do not contain enough information. Finally,
surface interreflections are ignored, which mainly leads to biased depth-map bright-
ness. To compensate for this a uniform scaling factor is applied to each depth-map to
achieve an acceptable visual match to the original surface appearance. This means the
final depth d(x,y) from equation (2.13) is just multiplied by a scaling factor a ∈R. By
using a negative a the depth-map can be inverted as previously mentioned.

2.6 Examples
Figure 2.107 and 2.11 show two results of the depth hallucination algorithm. It is
clearly visible, that photographs of walls and floors seem to work really well. The
reason is, that their structure is in general easy (they can be considered perfectly as
a height field without global curvature) and their material is without any specular re-
flections. A detailed evaluation of the depth hallucination algorithm can be found in
chapter 5.

2.7 Histogram Matching
It is not always needed and sometimes even not possible to take a diffuse-lit and a flash-
lit picture pair of exactly the same surface cut-out. In the absence of a flash-lit image a
technique called histogram matching [HB95, NFH07] can be used to match against a

7The rock wall image was taken from the paper [GWM+08].

21

22 Chapter 2. Depth Hallucination

(a) Diffuse image (b) Flash image (c) Depth-map

Figure 2.11: Bumpy wall example

visually similar picture for which a model of a captured picture pair have already been
recovered. This drastically simplifies the capturing requirements for large surfaces,
composed of the same material, but containing significant meso-structure variation
(e g. large floors or walls).

2.7.1 Histograms
Mean value and mean square deviation are simple measures for characterising the
distribution of greyscale values in an image. More information about the distribution of
grey scale values can be obtained by looking at the histogram of relative probabilities
of an image I = (i(x,y,1)):

histoI : G 7→ R,g→ 1
s
|{(x,y)|i(x,y) = g}|

Such a histogram of an image is a distribution function, because the histogram is nor-
malised by the number of pixels of I. Thus it applies, that

∑
g∈G

histoI(g) = 1 and 0≤ histoI(g)≤ 1,∀g ∈ G.

In dark images with low contrast mainly the relative probabilities histo(g) for small g
are high, whereas in bright images with low contrast mainly the histo(g) for big g are
high. It should be noted, that a histogram does not allow a mapping between greyscale
value probabilities and their spatial arrangement in the associated image [NFH07].

2.7.2 Histogram Specification
The goal of histogram specification is to modify an image Iin = (iin(x,y,1)), such that
its histogram histoIin matches an arbitrary reference histogram historef. Thus a mapping
function

g′ = fm(g),g,g′ ∈ G (2.14)

22

2.7. Histogram Matching 23

is searched that converts the input image Iin into a new image I′in, such that

histoI′in
≈ histoIref

Such a mapping function can be found by combining the two histograms (which are, as
already mentioned, nothing more than distribution functions). For a given pixel value
g from image Iin, the new pixel value g′ can be obtained using

g′ = histo−1
ref (histoIin(g)). (2.15)

This of course assumes that historef is invertible, which means that histo−1
ref (x),x ∈

[0,1] exists. This mapping can be interpreted as two distribution look-ups. First, the
probability for a pixel g in the input image is looked-up. Then the pixel value in
the reference histogram for the given probability of g is looked-up, which yields g′

[BB07]. Therefore the final mapping function fm from equation (2.14) can be written
using equation (2.15) as

fm(g) = g′ = histo−1
Iref

(histoIin(g)).

2.7.3 Algorithm
To adjust the histogram histoIin of an input image to the histogram histoIref of a ref-
erence image, the technique above does not work in general. The problem is, that
the distribution functions, described by the histograms, are not continuous (⇒ not in-
vertable). For example, if in an image two different pixel values have a probability of
0, the histogram is not bijective anymore and thus cannot be inverted.

In the following, a method to match two histograms is described, which works with
discrete histograms. The basic idea behind this method is to avoid inversions, but to
calculate the mapping function fm, by “filling in” the reference histogram histoIref , by
using cumulative distribution functions (CDF), which are defined as:

CDFI(g) = ∑
p≤g

histoI(p),g, p ∈ G

The advantage of using CDFs instead of distribution functions is that the former are
monotonically increasing, which makes it easier to approximate their inverse. In gen-
eral for a discrete CDF F it holds, that [BB07]:

CDF−1
I (y) = inf

x∈G
{CDFI(g)≥ y}.y ∈ [0,1].

The complete algorithm for calculating the mapping function fm is shown in listing 2.2.
It is important to note, that the following algorithm expects image pixels in range
0−255. This is needed for indexing the look-up table (mapping function).

23

24 Chapter 2. Depth Hallucination

1 float[256] calcCdf(float histo[256], int pixelCount)
2 {
3 float cdf[256];
4
5 cdf[0] = histo[0];
6
7 for (int i=1; i<256; i++)
8 {
9 cdf[i] = cdf[i-1]+histo[i];

10 }
11
12 return cdf;
13 }
14
15 byte[256] matchHistograms(float histoIn[256], float histoRef [256])
16 {
17 byte fm[256];
18 float cdfIn = calcCdf(histoIn);
19 float cdfRef = calcCdf(histoRef);
20
21 for (int i=0; i<256; i++)
22 {
23 int j = 255;
24
25 do
26 {
27 fm[i] = j;
28 j--;
29 }
30 while (j >= 0 && cdfIn[i] <= cdfRef[j]);
31 }
32
33 return fm;
34 }

Listing 2.2: Algorithm for calculating the mapping function fm

This algorithm can be expanded easily to multi-channel images by applying the al-
gorithm separately on every channel.

2.7.4 Example
The following images show an example of using the histogram matching algorithm
in the sense of depth hallucination. In figure 2.12, the sample input image pair is
shown. Both photographs are of the same material and surface type, but were taken at
different locations. In order to recover a depth-map for the diffuse-lit image, a flash-
lit image has to be created. This is done by histogram matching the diffuse-lit image
against the flash-lit image. In figure 2.13, the resulting flash-lit image in comparison
to the reference image is shown. At first glance, the result looks very good. The
image became a lot brighter and looks very similar to the reference image. On closer
inspection it strikes out, that the contrast of the matched image is a lot higher than in
the reference image. This is because the contrast in the diffuse image is higher too,
and histogram matching does not change the contrast of an image. More problems

24

2.7. Histogram Matching 25

(a) Diffuse-lit input image (b) Flash-lit reference image

Figure 2.12: Histogram of left image is to be matched to histogram of right image

(a) Result of histogram matching (b) Reference taken with flash (c) Difference image

Figure 2.13: Comparison of result of histogram matching and the reference image

may arise when in the image to match appear colours, which are not contained in the
reference image. In this case the mapping function may fail. Situations like this are
tested more detailed in the evaluation in chapter 5.

25

26 Chapter 2. Depth Hallucination

26

Chapter 3

Image Segmentation

3.1 Motivation
The depth hallucination algorithm has limitations on certain images. Especially, it
has problems, when there are translucent or reflective regions in an image (e. g. a
window or a small puddle, reflecting the environment), because the correct surface
appearance cannot be captured correctly. In this case it would be desirable to exclude
these regions from the depth hallucination process and let the user specify a constant
depth value. Hence a method is needed to select regions. To make selecting regions
easy and convenient, it would be desirable to automate this step as much as possible.
In the following it is shown how image segmentation methods can be used for semi-
automatically selecting regions, which are then excluded from the remaining depth
hallucination process.

3.2 Definition of Image Segmentation
Image segmentation means the process of partitioning a digital image into multiple
sets of pixels, so called segments, whose union is the entire image. The goal of image
segmentation is to separate an image into regions, which gives the image more meaning
or makes it easier to analyse it. More formally, given an image I = (i(x,y,c)) with pixel
positions

P = {(x,y)|x ∈ {1, . . . ,w},y ∈ {1, . . . ,h}},

a segmentation of I can be defined as a set of n≥ 2,n∈N disjoint, non-empty segments
Si ⊂ P, i = 1, . . . ,n, which fulfil the following requirements [Zha06]:

1.
⋃n

i=1 Si = P,

2. Si is a connected segment, for i = 1, . . . ,n

3. Si∩S j = ∅, i 6= j, i, j = 1, . . . ,n

27

28 Chapter 3. Image Segmentation

Figure 3.1: Seed strokes for advising the algorithm, which pixels definitely belongs
to which segment

3.3 Graph-Cut

In this section the principle way of using graphs for segmenting an image in n regions
is described. First, a brief overview of the graph-cut algorithm for just two regions
(foreground and background) is given. Next it is shown how the graph is constructed
based on the image’s pixels and seed strokes. After that, it is presented, how the edge
weights in the graph are calculated. In the last section the basic graph-cut algorithm is
expanded to an arbitrary number of segments.

3.3.1 Overview

The graph-cut approach for segmenting images was first applied in computer vision
by Greig et al. [GPS89] in 1989. Graphs from graph theory are used to compute a
global segmentation of an image with two regions. The most important advantage of
graph-cut based methods to other approaches is its reduced noise sensitivity and a less
probable leakage between two segment boundaries, due to the calculation of a global
solution. As input the image to segment is needed. Additionally a set of so-called seed
strokes is required.

Seed Strokes Full automatic segmentations rarely yield expected results. Real-life
images mostly do not contain very distinct regions which can be easily detected as
such. Therefore it is vital to roughly advise the algorithm, which parts of an image be-
long to the foreground, and which to the background. This corresponds to a limitation
of the search space, which improves the quality of the results and reduces execution
times as well. Advises for the algorithm are given by marking certain regions in the
image with differently coloured lines. These lines are called seed strokes. An image
together with some seed strokes is shown in figure 3.1.

28

3.3. Graph-Cut 29

Sink

Source
t-edge

n-edge

l-nodes

p-nodes

Figure 3.2: Result of transforming an image into a graph for segmentation

3.3.2 Graph Construction

As a start a graph G has to be constructed on which the graph-cut algorithm can be
applied later on. This graph contains two different kinds of nodes. The so called
p-nodes represent the pixels of the input image I = (i(x,y,c)). Additionally two ter-
minal nodes s and t, so called l-nodes, are added to the graph. s is the source and
t the sink node, which represent the object foreground and background respectively.
Bidirectional edges connect the p-nodes and every p-node is connected via a directed
edge with both terminal nodes. The p-nodes could be connected in an arbitrary con-
figuration. However, in practice the usage of complex graphs (for example by using
diagonal edges) does not yield significant better segmentation results, but higher exe-
cution times [BK01]. Hence in the following only grid configurations are taken into
account. The edges between p-nodes are called n-links, the edges to and from terminal
nodes are called t-links.
The computation of the edge weights are based on Pott’s Energy Interaction Model
[Pot52]. After setting reasonable edge weights, a minimum cut is calculated which
separates the node set V into two disjoint sets. These sets represent the segmented
foreground and background of the image. Such an image-to-graph transformation is
shown in figure 3.2 for an image of 3×3 pixels.

3.3.3 Flow of a Graph

Let V be a set of vertices and E be a set of edges. A s-t-graph (also called flow
network) G = (V,E) is defined as a connected, directed, finite graph with positive
capacities c(u,v) ≥ 0,(u,v) ∈ E. If (u,v) /∈ E, c(u,v) = 0 is assumed. Furthermore,
two special nodes are distinguished in G: a source node s ∈ V and a sink node t ∈ V ,
where s may only have outgoing, t only incoming edges. The flow of such a s-t-graph
is a real-valued function f : V ×V → R, with the following properties:

29

30 Chapter 3. Image Segmentation

Capacity Constraint
f (u,v)≤ c(u,v),∀u,v ∈V (3.1)

The flow along an edge cannot exceed its capacity.

Skew Symmetry
f (u,v) =− f (v,u),∀u,v ∈V (3.2)

The flow from node u to node v must be the opposite of the flow from node v to
node u.

Flow Conservation
∑
v∈V

f (u,v) = 0,∀u ∈V\{s, t} (3.3)

For all nodes, except source and sink, the sum of the incoming flow has to be the
same as the outgoing flow.

3.3.4 Maximum Flow and Minimum Cut
The problem of maximum flow is to find the maximum amount of flow from the source
to the sink in a s-t-graph. A so called s-t-cut of a graph G is defined as the partitioning
of the nodes V into two disjoint sets S and T = V\S, so that s ∈ S and t ∈ T . For a
given flow f the net flow F(S,T) of a cut (S,T) is defined as the sum of all flow from
S to T :

F(S,T) = ∑
u∈S

∑
v∈T

f (u,v)

The capacity of a cut (S,T) is defined in a similar way as the sum of the capacities of
all edges from S to T :

C(S,T) = ∑
x∈S

∑
y∈T

c(u,v).

A cut is a minimum cut, if the capacity of this cut is not larger than the capacity of any
other cut.

Definition 1 (Cut-Flow-Theorem). Let f be the flow of a s-t-graph G = (V,E) with
source s∈V and sink t ∈V . Then, the maximum flow of G is the same as the minimum
cut of G.

To determine the minimum cut of a s-t-graph, it is therefore sufficient in order to
calculate its maximum flow. The proof of this theorem is omitted, because it would
rise above the scope of this thesis. The proof can be found in [FF62].

3.3.5 Flow Algorithms
There are a lot of algorithms for calculating the maximum flow of a flow network. Most
of them can be classified as push-relabel algorithms according to Goldberg-Tarjan, or
as augmenting path algorithms according to Ford-Fulkerson.

30

3.3. Graph-Cut 31

Augmenting Paths The concept of the original algorithm of Ford and Fulkerson is
to start with a flow of f (u,v) = 0 for all edges in the flow network. Then successively
augmenting paths1 from source to sink are searched in the residual graph2, which
increase the flow. The worst-case execution time of this algorithm is O(fmax · |E|),
where |E| is the number of edges and fmax is the maximum flow in the flow network
[FF62].

Push-Relabel The basic idea of the push-relabel algorithm by Goldberg and Tarjan
is to not use augmenting paths, but push as much flow as possible from source to
neighbouring nodes. Then the flow is pushed further step by step towards the sink.
This yields incorrect flows in the intermediate steps, because the flow conservation
property (3.3) is violated. Hence so called preflows are used instead of flows. The
worst-case execution time of this algorithm is O(|V |2 · |E|), where |V | is the number of
nodes and |E| the number of edges in the flow network [GT88].

Algorithm of Boykov and Kolmogorov In the area of computer vision it has been
shown, that augmenting path based algorithms are more efficient than push-relabel
based algorithms. Although the runtime complexity of push-relabel techniques is su-
perior, a little modification on the augmenting path algorithm makes it empirically
(in practice) faster. The algorithm of Boykov and Kolmogorov [BK01] uses, similar
to other augmenting path algorithms, search trees for finding augmenting paths from
source to sink. The major difference to the standard algorithm by Ford and Fulkerson
is that two search trees are used instead of just one. One search tree contains the source
node as root and the other the sink. When calculating the maximum flow both trees
grow towards each other, effectively reducing execution time. The worst-case com-
plexity of this algorithm is O(fmax · |V |2 · |E|), where |V | is the number of nodes, |E|
the number of edges, and fmax the maximum flow in the flow network. Even though
the worst-case complexity is worse than the worst-case complexity of the two standard
algorithms it turned out that in practise the algorithm is much faster. In table 3.13 the
execution times of different maximum flow algorithms are shown in comparison to the
algorithm of Boykov and Kolmogorov.

3.3.6 Energy Functions

Image segmentation algorithms, and of course graph-cut as well, basically try to find
the optimal solution to a binary problem: assigning each pixel in an image a label,
which represents its associated segment. Of course, constraints have to be defined,

1An augmenting path is a path from source to sink in the residual graph, where each edge has a
positive capacity. Such a path can be used to further increase the flow.

2A residual graph gives the amount of remaining capacity for each edge. Its topology is identical to
the flow network, but its edges are set to the remaining capacities, with respect to the current flow.

3The table was taken from the paper [BK01].

31

32 Chapter 3. Image Segmentation

Algorithm Bell photo Lung CT Liver MR
DINIC 2.73 s 2.91 s 6.33 s
H PRF 1.27 s 1.0 s 1.94 s
Q PRF 1.34 s 1.17 s 1.72 s

Boykov/Kolmogorov 0.09 s 0.22 s 0.20 s

Table 3.1: Comparison of execution times of different maximum flow algorithms for
segmenting images

which describe in which fashion the labels are assigned. An important prerequisite is
that the labels are homogeneous in regions of low discontinuities, but strong discon-
tinuities have to be kept. These constraints can be formulated by defining the pixel
labelling problem as the task of minimising an energy function. This minimisation can
be computed using a graph-cut.

A popular energy model is Pott’s Interaction Energy Model [Pot52], which is defined
as

E(f) = ∑
p∈P

Dp(fp)︸ ︷︷ ︸
data term

− ∑
p,q∈N

Vp,q(fp, fq)︸ ︷︷ ︸
interaction term

,

where P is the set of image pixels, f = { fp|p ∈ P} the unknown labelling and N ⊂
P×P a neighbourhood of pixels. Dp is called the data term and Vp,q the interaction
term. The data term describes the cost of labelling a pixel p with label fp. The in-
teraction term penalises two neighbouring pixels p and q with labels fp or fq, if they
are too different. So both terms have to be defined in a way that the energy function’s
minimum should correspond to a good segmentation. Depending on the problem, the
interaction term can be used to prefer continuities or discontinuities between pixels
[LVJ07].

3.3.6.1 Data Term

For the data term the Euclidean distance between a pixel and the initial seed strokes
for the foreground are used. These distances can be calculated for example using
the 8SED algorithm [Dan80] or chamfer distance transforms [RP66]. Applied on an
image, these methods calculate a field of vectors, containing the distances to the nearest
pixel which is not black. As data term applied on the foreground seed strokes, this
can be interpreted as the more the distance of a pixel p to a pixel q of a foreground
stroke increases, the less probable it is, that p is classified as a foreground pixel. In
figure 3.3(b) the distance transformation for the seed strokes from figure 3.3(a) are
shown.

32

3.3. Graph-Cut 33

(a) Seed strokes (b) Distance transformation of
foreground seed strokes in first it-
eration

(c) Segmentation result

Figure 3.3: Seed strokes, their distance transformation, and the segmentation result

3.3.6.2 Interaction Term

As already mentioned, the goal of the interaction term is to yield high energies in
homogeneous regions and low energies in regions with discontinuities. This makes
the graph-cut algorithm cutting between nodes (pixels) with strong discontinuities,
because the edge capacities represented by the interaction term are low. For the inter-
action term a lot of different functions exist, which range from easy, intensity based to
more elaborate terms. In the following two interaction terms are presented: one pixel
based and one edge based.

Exponential Intensity Differences A relatively simple interaction term is to take
the intensity difference between two neighbouring pixels p and q as the reciprocal of
an exponential function [GWW99, SM97, BFL06]. This interaction term is especially
applicable for greyscale images, because pixel intensities (greyscale values) are com-
pared. Segment leakage between differently coloured image regions with the same
brightness arise when using the term on multi-channel images.

Vexp(p,q) = e−
(grey(p)−grey(q))2

σ2 (3.4)

The term penalises a lot for discontinuities between pixels of similar intensity when
|grey(p)−grey(q)|< σ2. However, if pixels are very different, |grey(p)−grey(q)|>
σ2, then the penalty is small. Intuitively, this function corresponds to the exponential
distribution of noise among neighboring pixels of an image.

Edge (Gradient) Differences Edges in images are found in regions with sharp colour
and/or brightness changes. Thus the gradient of an image used for edge detection can
be utilised as interaction term. It yields small values for strong discontinuities between
the pixels p and q and high values for weak discontinuities.

Vgrad(p,q) =
1

||∆p||+ ||∆q||
(3.5)

33

34 Chapter 3. Image Segmentation

3.3.7 Expanding to Multiple Segments
The graph-cut algorithm works inherently only for cutting an image into two segments,
because the graph only has one source and one sink node, representing foreground and
background. To expand the algorithm to n segments, the basic graph-cut algorithm is
applied iteratively, whereas the remaining pixels to segment decrease in each iteration.
Given a set of n > 2,n ∈ N seed strokes the following steps are performed iteratively.

1. Use the first seed stroke to mark the image’s foreground and all the remaining
seed strokes to mark the background.

2. Calculate a segmentation using graph-cut. The result is two segments: fore-
ground and background.

3. Remove the first stroke (previously used for the foreground) and remove all pix-
els of the foreground from the image.

4. Go to the first step.

3.3.8 Summary
Graph-cut achieves robust, global segmentations and even difficult images can be seg-
mented by using many seed strokes. Furthermore, the algorithm can be easily ex-
panded to arbitrary dimensions, for example for segmenting three-dimensional data,
as it is often required in medical applications.
On the one hand the quality of the segmentation is highly depending on the used en-
ergy function and parameters. On the other hand, the same energy function and choice
of parameters do not yield the same quality in all fields of application. Thus it is nec-
essary to choose a proper energy function depending on the image data. Furthermore,
the graph-cut method is limited by the restricted possibility of user interaction in the
segmenting process, which is mainly determined by the capacities and topology of the
graph and its edges. Another disadvantage is that the number of segments must be
known before segmentation (by the number of seed strokes). Some examples and an
evaluation of the graph-cut algorithm are presented in chapter 5.

34

Chapter 4

Implementation

Computer graphics is a very practical discipline. Therefore it is especially important, to
implement a certain technique, to show its practical usefulness in terms of performance
and quality of the results. In this chapter important aspects of the implementation of
the different previously presented algorithms are shown. In addition to the algorithm
implementation I wrote a user friendly tool, which supports creation, previewing and
storing of depth-maps. It is supposed to be easily capable of being integrated into
an existing content generation pipeline (in particular into the Virtual Aachen Project).
The visualisation modes of the tool are also presented in this chapter.

4.1 Used Libraries
For implementing the algorithms and the tool, I used some well known programming
libraries. This allowed me to concentrate on the implementation of the algorithms and
the tool it-self, instead of reinventing the wheel again by writing elementary and re-
peating core functionality.
In the following the libraries which were used in the implementation are presented in
short. I paid attention, that all libraries are platform independent, that the implementa-
tion can be compiled and executed using different operating systems. Windows, Linux
and MacOS were tested.

Qt Toolkit The Qt Toolkit1 is an open-source cross-platform application framework,
mainly used for the development of applications with rich user-interfaces. Over
the time the Qt library has grown from a GUI-only framework to a full featured
application and communication framework. Therefore, it can also be used for
non-GUI applications such as console tools and servers.

OpenCV Open Computer Vision2 is an open-source cross-platform library for digital
image processing and computer vision. It was originally developed by Intel and

1http://www.qtsoftware.com
2http://sourceforge.net/projects/opencvlibrary/

35

http://www.qtsoftware.com
http://sourceforge.net/projects/opencvlibrary/

36 Chapter 4. Implementation

is free for research and commercial use. The library is highly optimised and
especially targeted on Intel hardware.

GLEW The OpenGL Extension Wrangler Library3 is an open-source cross-platform
library for conveniently loading OpenGL extensions and determining if a certain
extension is supported on the target platform.

4.2 Compilation
First all above mentioned libraries have to be installed on the target system. As already
said, all libraries are platform independent. Therefore I used two different project
types for compilation under Unix operating systems (Linux and MacOS were tested)
and Windows (XP and Vista were tested).

Unix For compilation under Unix a .pro-file (Qt Project) is available in the directory
depthhallu/unix. qmake is used to generate a makefile on the target platform. To
compile the project just execute the following commands:

1. qmake depthhallu.pro

2. make

Windows For Windows a Microsoft Visual C++ 2008 solution is available in the di-
rectory depthhallu\win32. Of course qmake can also be used to generate a makefile
under Windows. If Visual C++ is used instead of make, the Microsoft program nmake
has to be used.

4.3 Algorithms

4.3.1 Depth Hallucination
In the implementation of the depth hallucination algorithm, I used the OpenCV library
for a lot of basic work like loading and storing images. However also a non-trivial task
could be solved using OpenCV. Calculating the Laplacian pyramid was implemented
using the cvSmooth, cvPyrUp and cvPyrDown functions. Programming of the rest of
the algorithm was a straight transformation of the described algorithm into C++ code.

4.3.2 Graph-Cut Segmentation
For calculating the maximum flow of a graph I used the reference implementation of
the algorithm presented in [BK01] by Yuri Boykov and Vladimir Kolmogorov4. The

3http://glew.sourceforge.net
4http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software/maxflow-v3.0.src.tar.gz

36

http://glew.sourceforge.net
http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software/maxflow-v3.0.src.tar.gz

4.4. Visualisation 37

Edge Pixel membership Capacity
{p,q} n-link Vp,q
{p,s} p is not a seed-point Dp
{p,s} p is object seed-point ∞

{p,s} p is background seed-point 0
{p, t} p is not a seed-point Dp
{p, t} p is object seed-point 0
{p, t} p is background seed-point ∞

Table 4.1: Summary of how to assign the capacities of the different edge types in the
graph used for graph-cut image segmentation

...

...

...

...

...

...

...

Figure 4.1: A grid-graph as it is used in the graph-cut algorithm

computation of the 8SEG algorithm was solved using the OpenCV library, in the sense
of calculating a distance transformation using cvDistTrans. The assignment of the
edge capacities is summarised in table 4.1. The p-nodes (representing the pixels in the
graph) are connected using bidirectional edges, where each p-node is connected with
its right and its bottom neighbour. This effectively yields a grid-graph, as shown in
figure 4.1.

4.4 Visualisation
Visualising the results of the depth hallucination algorithm is very important to get a
visual feedback about the quality and correctness of the results. I implemented differ-
ent visualisation modes in the tool, which are explained in the following.

Relief Mapping This is the most advanced and most realistic visualisation mode,
which could be used for visualisation in practise. It uses the generated depth-
maps for adjusting the texture coordinates, yielding in much more realistic ren-

37

38 Chapter 4. Implementation

1.0

0.0

Pixel taken using normal

texture mapping

Pixel taken using

relief mapping

Ray

(a) Visualisation of ray tracing the depth-map

incorrect correct

binary search

middle point

1.0

0.0

(b) Problem when search-
ing intersection point

Figure 4.2: Illustration of relief mapping and problem of searching the intersection
points

derings. As this technique is a bit more complex, it is described in detail in the
following section.

Terrain In this visualisation mode, a terrain (of triangle strips or points) is generated
from the depth-map. This terrain mesh can be exported to make comparisons to
other terrains. Further in this visualisation hills and valleys can be seen in 3D.

Standard Rendering Here standard diffuse texture mapping with bilinear filtering is
used for rendering. This mode was implemented to make the difference between
standard texture mapping and relief mapping directly comparable.

4.4.1 Relief Mapping
Relief mapping is an advanced texture mapping technique, which allows the rendering
of highly detailed surfaces without the need of additional geometry. It was first pre-
sented by Oliveira et. al in 2000 [OBM00]. An alternative to relief mapping is parallax
mapping [KTI+01, Wel04], which is less accurate but faster.
Relief mapping basically applies a texture coordinate correction, which is calculated
by short-distance ray tracing a depth-map in a pixel-shader, as presented in [PNC05].
This correction is desirable, because different texels are hit when viewing a bumpy
surface from different angles. This effect is illustrated in figure 4.2(a).

One diffuse texture-map and one depth-map are required as input. The height val-
ues in the depth-map are normalised to the range [0,1]. From bottom to top the values
increase from 0 to 1. In figure 4.3, a sample input texture pair is shown. In a pixel
shader, the intersection point of the viewing ray and the height field represented by the
depth-map is searched. Two different searches are required: a linear search first, and
a binary search afterwards. The linear search is required, because the first midpoint of

38

4.4. Visualisation 39

(a) Diffuse-map (b) Depth-map

Figure 4.3: Example input texture pair

(a) Normal texture mapping (b) Relief mapping

Figure 4.4: Differences between default texture mapping and relief mapping

the binary search could lie outside the height-field surface, but the viewing ray could
have already hit the surface before. This problem is illustrated in figure 4.2(b).
The result of using relief mapping in comparison to normal texture mapping is shown
in figure 4.4. It is clearly visible, that in the visualisation which uses relief mapping
the terrain looks a lot more three-dimensional and realistic.

39

40 Chapter 4. Implementation

40

Chapter 5

Evaluation

In this chapter the previously presented algorithms (depth hallucination, histogram
matching and image segmentation using graph-cuts) are evaluated. The focus is on
depth hallucination, because this algorithm is the essential part of this thesis. His-
togram matching and graph-cut are only evaluated relating to the usage of depth hal-
lucination. An important aspect is the applicability of depth hallucination for recon-
structing depth-maps of facades, because this is very important for the Virtual Aachen
Project.

5.1 Depth Hallucination
In this section the depth hallucination algorithm is evaluated. First of all some well
working reconstructions are shown together with their input image pairs. Later on
image pairs which could not be reconstructed as expected are shown and it is analysed
why the reconstruction does not work.

5.1.1 Well Working Examples

Some well working examples were already shown in section 2.6. These images (see
figure 5.3 and 5.4) are again listed here, together with some new examples (see fig-
ure 5.1 and 5.2).
All input image pairs on which the algorithm is working pretty well are showing floors
or walls. The reason is, that on this kind of surface the assumptions that were made
are appropriate. Firstly, they can be perfectly represented as height fields. Secondly,
they are diffusely illuminated and their materials do not have any specular reflections.
A third reason is that the camera can easily be oriented perpendicular to the surface
and the distance from the camera to the surface is not too big. This way, the flash
has enough power to strongly brighten up the flash-lit image. In summary one can
say, that depth-maps of walls and floors can be reconstructed very well using depth
hallucination.

41

42 Chapter 5. Evaluation

(a) Diffuse image (b) Flash image (c) Depth-map

Figure 5.1: Gully cover example

(a) Diffuse image (b) Flash image (c) Depth-map

Figure 5.2: Church wall example

(a) Diffuse image (b) Flash image (c) Depth-map

Figure 5.3: Rock wall example

42

5.1. Depth Hallucination 43

(a) Diffuse image (b) Flash image (c) Depth-map

Figure 5.4: Bumpy wall example

(a) Diffuse image (b) Flash image (c) Depth-map

Figure 5.5: Ivy wall example: Here the surface cannot be plausibly represented as a
height-field

5.1.2 Problems and Limitations
There are cases in which the resulting depth-maps and rendered surfaces do not look as
expected and/or desired. These are situations, in which the made assumptions do not
hold. In the following some samples, where the algorithm yields unexpected results,
are examined and analysed.

The first case is a rock wall with ivy twines, which are physically separated from
the stone surface below, as shown in figure 5.5(a). This separation violates the basic
assumption that the underlying surface may be plausible represented as a height field.
As a result, the mathematical model fails, because hills and valleys cannot be described
using hemispheres and cylinders anymore. Hence the resulting depth-map is wrong in
regions with ivy twines, as shown in figure 5.5(c).

Images with abrupt depth changes seem to be difficult too, because often a little self-
shadowing occurs, as shown in image 5.6(a). In this case, the assumption of a com-
pletely diffuse illumination is violated. The result is a depth-map, which is poorly
pronounced in regions of shadows, as shown in figure 5.6(c).

43

44 Chapter 5. Evaluation

(a) Diffuse image (b) Flash image (c) Depth-map

Figure 5.6: Archway example, showing problems due to self-shadowing in regions of
heavy changes in depth

(a) Diffuse image (b) Flash image (c) Height field

Figure 5.7: Cobblestone example 2, having problems because of a directional light
casting shadows

A last example for an image pair, where the algorithm fails is shown in figure 5.7(a)1.
Here a directional light casts shadows in one direction. Thus the diffuse illumina-
tion assumption is violated, because light is not incident equally from all directions
any more. A height field visualisation of the depth estimation shows, that the overall
structure of the surface could not be reconstructed, because of the shadows.

5.1.3 Reconstruction of Facades
For the Virtual Aachen Project it would be desirable, to not only be able to reconstruct
walls and floors, but also whole facades. It turned out that reconstructing depth-maps
of whole facades is quite difficult. During the reconstruction process, different prob-
lems arise, which are visible in figure 5.8(c). The three most major problems are
described in the following.

1. For reconstructing an entire facade, a large region has to be photographed. This
can only be accomplished by positioning the camera and flash far away from the

1The image was taken from http://www.bourgetbros.com/site-admin/images_lotus/
20112008_2046351_Multiblend%20Cobbles%20Tumbled%20Installed.JPG.

44

http://www.bourgetbros.com/site-admin/images_lotus/20112008_2046351_Multiblend%20Cobbles%20Tumbled%20Installed.JPG
http://www.bourgetbros.com/site-admin/images_lotus/20112008_2046351_Multiblend%20Cobbles%20Tumbled%20Installed.JPG

5.1. Depth Hallucination 45

(a) Diffuse image (b) Flash image (c) Depth-map

Figure 5.8: Facade example having different problems: low brightness (blue), not
allowed materials (marked red), overhangs and elevations with a not perpendicular
light direction (marked green)

facade. The major problem now is the distance of the camera and flash to the
surface. Due to this distance, the brightness in the flash-lit image is quite low,
because the flash has not enough power. The results are poor and sometimes
even wrong depth-maps. More precise, regions of exactly the same material, but
with drastic differences in brightness (marked blue in the depth-map).

2. Another problem is that some facade elements (e. g. windows or doors) violate
the assumption, that the underlying surface material does not contain specular or
reflecting regions. It is clearly visible, that the algorithm failed for the windows,
which appear black and grey for the same depth in the depth-map (marked red
in the depth-map).

3. Facades contain overhangs and elevations. Additionally the direction of incident
light is not perpendicular to the facade. Thus the above plane model does not
hold anymore. The result are mainly quite dark colours in the regions of the
overhangs and elevations (marked green in the depth-map).

At a first glance it seems, that capturing whole facades is impossible, because of the
three major problems described previously. At a second glance it turned out, that at
least some of these problems can be solved.

Regions of materials which violate the specular reflection assumption can be excluded
from the hallucination process, by selecting them in advance. The selection step can be
automated using image segmentation as described earlier. The depth for the selected
regions can then be specified by the user. The effect of using different depth-maps,
for visualising the facade shown in figure 5.8(a) using relief mapping is shown in fig-
ure 5.9.
For solving the low brightness issue I tried to capture some flash-lit images of the fa-
cade from a close range. Afterwards I merged these images into one (by resize and
copy and paste) and used this image as reference image in the histogram matching

45

46 Chapter 5. Evaluation

(a) Relief mapping using original
depth-map, see figure5.8(c)

(b) Relief mapping using adjusted
depth-map

(c) Adjusted depth-map

Figure 5.9: Effect of visualising the same surface using the original and the adjusted
depth-maps

(a) Combination of near range
flash images

(b) Matched flash image (c) Depth-map

algorithm in order to approximate a flash-lit image. I hoped to be able to calculate a
flash-lit image this way. It turned out, that this does not work very well, as shown in
figure 5.9. The depth-map does not contain these drastically brightness changes in ar-
eas of same depth, but the overall quality is still bad. However, in regions of overhangs
and elevations (e. g. above the windows), depth could be estimated a lot better than
before.

5.1.4 Performance
At the end of this section a short performance analysis is shown. In table 5.1 the execu-
tion times needed for generating the depth-maps of the previous examples are shown.
All tests were done on a Intel Core 2 Duo with 2.5 GHz and 4 GB main memory.
One can clearly see, that the execution times of my quite unoptimised implementation
mainly depends on the size of the images and the level of detail (=̂ number of Lapla-
cian pyramid levels) used. This appears due to the computational costs for calculating
a Gaussian Laplacian pyramid and evaluating the combined depth model for each pixel
in each pyramid level. All other image-based operations are quite cheap, because they
are performed pixel-wise. This means their computational complexity is linear in the

46

5.2. Histogram Matching 47

Image Size Level of detail Execution time
Cobblestone 1024×769 3 406 ms
Cobblestone 1024×769 4 582 ms
Cobblestone 1024×769 5 1.005 s

Archway 2048×1538 3 1.708 s
Archway 2048×1538 4 2.490 s
Archway 2048×1538 5 4.504 s
Rock wall 900×603 5 667 ms

Bumpy wall 4288×2848 5 15.870 s

Table 5.1: Execution times of depth hallucination algorithm for different images

number of image pixels: O(wh). In summary, for medium sized images, as they are
used mainly in visualisations (e. g. 512×512 or 1024×1024 images), the performance
is already acceptable. If larger images have to be processed frequently, the algorithm
has to be optimised.

5.2 Histogram Matching

Histogram matching is a great simplification and improvement for image acquisition.
Its strength and flexibility can be demonstrated further, by reconstructing depth-maps
of photographs, downloaded from the internet. In figure 5.10 and 5.11 the results of
estimating depth of two downloaded images2 are shown. Both images were matched
against the flash-lit cobblestone pavement image from figure 2.2(b). The structures of
the two images are very different, but the reconstruction works, as the depth-maps look
correct. For the histogram matching, only the overall image histogram counts (which
follows from the surface material). Thus images of arbitrary surface structure can be
used as long as their material is similar enough.

As the histogram matching works channel by channel, another interesting question
is what happens, if the greyscale histogram of one or more channel(s) of the image to
match against has a heavy brightness shift. In order to investigate on this, I painted
some red, green and blue coloured rectangles on the input image. The results are
shown in figure 5.12. It is clearly visible, that the overall image colour is shifted to-
wards the inverse of the shifted channel colour. For example for the red shift shown in
figure 5.12(a), the overall colour is shifted towards (1,1,1)T − (1,0,0)T = (0,1,1)T ,
which is cyan. Applying depth hallucination on such images, where the flash-lit image

2The rock wall image was taken from http://www.katalog.foto-lizenzfrei.de/
hintergrund/mauer-1.jpg. The cobblestone pavement image was taken from http:
//www.themarkeffect.com/JPG%20Photo%20Textures/Cobblestone%20Texture.jpg.

47

http://www.katalog.foto-lizenzfrei.de/hintergrund/mauer-1.jpg
http://www.katalog.foto-lizenzfrei.de/hintergrund/mauer-1.jpg
http://www.themarkeffect.com/JPG%20Photo%20Textures/Cobblestone%20Texture.jpg
http://www.themarkeffect.com/JPG%20Photo%20Textures/Cobblestone%20Texture.jpg

48 Chapter 5. Evaluation

(d) Diffuse image (e) Matched flash image (f) Depth-map

Figure 5.10: Result of histogram matching the cobblestone image from the Internet
against the cobblestone flash-lit image

(a) Diffuse image (b) Matched flash image (c) Depth-map

Figure 5.11: Result of histogram matching the rock wall image from the Internet
against the cobblestone flash-lit image

(a) Red channel shifted (b) Blue channel shifted (c) Green channel shifted

Figure 5.12: Matched images with different channels having a heavy brightness shift

48

5.3. Image Segmentation 49

(a) Seed strokes (b) Segmentation result

Figure 5.13: Sign wall segmentation

is approximated using histogram matching does not work of course. The problem is,
that in the regions of the differently coloured object the surface material differs too
much.

In summary one can say, that histogram matching is a great simplification and ad-
vancement for image acquisition. As long as the surface and material parameters of
the two images are similar, the algorithm works very well and produces satisfying
results. As soon as completely different colours arise, histogram matching gives in-
correct results in these regions. However, for depth hallucination this is not a serious
problem, because the images to match will in general have quite similar materials.

5.3 Image Segmentation
The graph-cut algorithm is only evaluated in regard to the usage in depth hallucination.
This means only images of facades are tested.
In general the segmentation works quite well, because facades mainly consist of equally
coloured regions (e. g. windows, doors, walls). The major problem is to get a sharp
separation between the different regions. In the following figures some examples of
using graph-cut based image segmentation on images of facades are shown. As in-
teraction term the edge differences term shown in equation (3.5) was used and the
Euclidean distance was used as data term. The segmentation of the images shown in
the figures 5.13 and 5.14 (1024× 766 pixels) takes about 3 seconds on a Intel Core
2 Duo with 2.5 GHz and 4 GB main memory. In practise it turned out, that the edge
differences interaction term works quite well on facade images. The exponential in-
tensity differences only yield acceptable results in greyscale images, because it does
not take colour changes into account as it only regards greyscale intensity changes.

49

50 Chapter 5. Evaluation

(a) Seed strokes (b) Segmentation result

Figure 5.14: Blue facade segmentation

(a) Seed strokes (b) Segmentation result

Figure 5.15: Reflecting window facade segmentation

In figure 5.15 a facade is shown, which is really difficult to segment. Especially the
rolling shutter, the alternating windows and wall, as well as the hedge in front of the
building make problems, because these regions are varying very much. They consist
primarily of patterns and not of a constant colour. Hence texture-based image segmen-
tation might help here.

50

Chapter 6

Closing Words

A new method for estimating depth from shading has been presented. For simplifying
image acquisition histogram matching was introduced. Due to the problems of depth
hallucination with specular and reflecting materials, it was shown how image segmen-
tation algorithms can be used to semi-automatically select these regions. The strengths
and weaknesses of depth hallucination and the other algorithms with regard to depth
hallucination were evaluated.
All in all it has been shown, that the depth hallucination algorithm can be used per-
fectly to reconstruct depth-maps of floors and walls. On facades the algorithm has
certain problems. Only the problem with reflecting and specular materials could be
solved by using image segmentation. The depth in these regions could then be set to
a constant value. For the other problems, no really well working solution could be
found. Some experiments were made to improve the depth-map quality of facades, but
they yield only small improvements. Due to lack of time, a more complex experiment
using a reflection pyramid during image acquisition to measure the amount of incident
light from each direction, could not be conducted. This could be done in future.

Currently, the histogram matching algorithm works channel-wise. Hence the greyscale
histogram of each channel is matched separately. This may result in incorrect colours,
because humans are sensitive to chromatic changes. Unfortunately expanding the his-
togram matching algorithm from one dimensional greyscale images to three dimen-
sional colour images is not straightforward. Expanding from a greyscale histogram to
a joint colour histogram (usually red, green and blue), as well as taking a human’s way
of colour perception into account makes coloured histogram matching not as easy as it
might look at a first glance [WSM99].

As the interaction term is primarily responsible for the segmentation quality, the graph-
cut algorithm could be improved by implementing better fitting energy functions adapted
individually to the given image data. For example the laplacian zero crossing filter for
edge detection [MH80], proposed by Mortensen and Barret [MB95] could yield better
results than the currently used terms. Their term combines three energy terms, taking

51

52 Chapter 6. Closing Words

different image information into account.

Besides improving the presented algorithms, there are many ways in which the tool
can be improved as well. The following ideas came into my mind during its develop-
ment:

Large or Seamless Textures (Texture Synthesis) When rendering surfaces with re-
constructed depth-maps of for example floors or walls, the texture wrapping
mode is mostly set to repeating. Consequently, it is important to have either
large or tileable texture- and depth-maps to obtain a seamless rendering of the
surface. Of course, photographs are hardly ever tileable. Thus a feature in the
tool for generating seamless or large texture- and depth-maps would be worth-
while. For generating large images based on smaller ones texture synthesis tech-
niques like the one presented in [LLX+01] could be used. For creating seamless
textures, one could attempt to scale the input image by 1

4 and mirror it 4 times.
Then Gaussian Laplacian pyramids could be used to blend between the images
1 and 2 and between the images 3 and 4. The two resulting images are then
blended again, yielding a seamless image [OABB85].

Normal-Map and Cone-Map Generation In the city viewer of the Virtual Aachen
Project, there are next to depth-maps also normal-maps and cone-maps1 required
for rendering. Generating all these needed textures would simplify the content
generation process by concentrating all work into just one single tool.

Automatic Rectification When capturing photographs of facades, in the majority of
cases it is impossible to orientate the camera perpendicular to the facade, be-
cause too much of the street and pavement would be visible. Such pictures are
perspectively distorted and the degree of distortion depends on the angle the
camera orientation differs from being perpendicular to the facade. Hence a fea-
ture in the tool for automatic rectification2 of images would be desirable. An au-
tomatic rectifier could be implemented, by first finding lines in an image. Then
vanishing points of the lines are computed and a transformation mapping is cal-
culated. For finding lines and vanishing points hough transformation [Hou62]
could be used as described in [Rot00].

Self-Shadowing/Occlusion In order to further increase the realism of the relief map-
ping visualisation mode self-shadowing and self-occlusion could be implemented
[PNC05].

1Ray-tracing the depth-map in relief mapping leads to artifacts in the rendered image due to the
linear search step for finding the first intersection. A cone-map stores cone ratios, which advises the
linear search how far it can go further on the ray in each step [Dum].

2Rectification means the elimination of geometric (e. g. perspective) distortions in images.

52

Bibliography

[BA83] Peter J. Burt and Edward H. Adelson. The Laplacian Pyramid as a Com-
pact Image Code. IEEE Transactions on Communications, COM-31,
4:532–540, 1983.

[BB07] Wilhelm Burger and Mark J. Burge. Digital Image Processing: An Al-
gorithmic Introduction using Java. Springer, November 2007.

[BFL06] Yuri Boykov and Gareth Funka-Lea. Graph Cuts and Efficient N-D Im-
age Segmentation. Int. J. Comput. Vision, 70(2):109–131, November
2006.

[BK01] Yuri Boykov and Vladimir Kolmogorov. An Experimental Compari-
son of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vi-
sion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26:359–374, 2001.

[Bli78] James F. Blinn. Simulation of Wrinkled Surfaces. In Computer Graphics
(Proceedings of SIGGRAPH 78), pages 286–292, August 1978.

[BN76] James F. Blinn and Martin E. Newell. Texture and Reflection in Com-
puter Generated Images. Commun. ACM, 19(10):542–547, October
1976.

[Coo84] Robert L. Cook. Shade Trees. In Hank Christiansen, editor, Computer
Graphics (SIGGRAPH ’84 Proceedings), volume 18, pages 223–231,
July 1984.

[Dan80] P. E. Danielsson. Euclidean Distance Mapping. Computer Graphics and
Image Processing, 14:227–248, 1980.

[DTM96] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and
Rendering Architecture from Photographs: A Hybrid Geometry- and
Image-Based Approach. Technical Report UCB/CSD-96-893, EECS
Department, University of California, Berkeley, Jan. 1996.

53

54 Bibliography

[Dum] Jonathan Dummer. Cone step mapping: An iterative ray-
heightfield intersection algorithm. http://www.lonesock.net/
files/ConeStepMapping.pdf. [Online, accessed 20. July 2009].

[FF62] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University
Press, 1962.

[FH04] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient Graph-
Based Image Segmentation. Int. J. Comput. Vision, 59(2):167–181,
September 2004.

[GPS89] D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact Maximum A
Posteriori Estimation for Binary Images. JRSS, 51(2):271–279, 1989.

[GT88] Andrew V. Goldberg and Robert E. Tarjan. A New Approach to the
Maximum Flow Problem. Journal of the ACM, 35:921–940, 1988.

[GWM+08] Mashhuda Glencross, Gregory J. Ward, Francho Melendez, Caroline
Jay, Jun Liu, and Roger Hubbold. A Perceptually Validated Model for
Surface Depth Hallucination. In SIGGRAPH ’08: ACM SIGGRAPH
2008 Papers, pages 1–8, New York, NY, USA, 2008. ACM.

[GWW99] Y. Gdalyahu, D. Weinshall, and M. Werman. Stochastic Image Segmen-
tation by Typical Cuts. In Computer Vision and Pattern Recognition,
1999. IEEE Computer Society Conference on., volume 2, page 601 Vol.
2, 1999.

[HB95] David J. Heeger and James R. Bergen. Pyramid-based texture analy-
sis/synthesis. In SIGGRAPH ’95: Proceedings of the 22nd annual Con-
ference on Computer Graphics and Interactive Techniques, pages 229–
238, New York, NY, USA, 1995. ACM Press.

[Her] Wil Hershberger. Taming those Annoying Highlights: Cross-
Polarization Flash Macro Photography. http://www.naturescapes.
net/042004/wh0404.htm. [Online, accessed 15. June 2009].

[Hou62] P.V.C. Hough. Method and Means for Recognising Complex Patterns.
In US Patent 3069654, 1962.

[Jäh05] Bernd Jähne. Digitale Bildverarbeitung. Springer, 6. edition, April
2005.

[KKH+93] Charles Kervrann, Charles Kervrann, Fabrice Heitz, Fabrice Heitz, and
Projet Temis. A Markov Random Field Model-Based Approach to un-
supervised Texture Segmentation Using Local and Global Spatial Statis-
tics, 1993.

54

http://www.lonesock.net/files/ConeStepMapping.pdf
http://www.lonesock.net/files/ConeStepMapping.pdf
http://www.naturescapes.net/042004/wh0404.htm
http://www.naturescapes.net/042004/wh0404.htm

Bibliography 55

[KRFB05] Erum Khan, Erik Reinhard, Roland Fleming, and Heinrich Bülthoff.
Image-Based Material editing. In SIGGRAPH ’05: ACM SIGGRAPH
2005 Sketches, page 148, New York, NY, USA, 2005. ACM.

[KTI+01] Tomomichi Kaneko, Toshiyuki Takahei, Masahiko Inami, Naoki
Kawakami, Yasuyuki Yanagida, Taro Maeda, and Susumu Tachi. De-
tailed Shape Representation with Parallax Mapping. In In Proceedings
of the ICAT 2001, pages 205–208, 2001.

[LB00] M.S. Langer and H.H. Bülthoff. Depth Discrimination from Shading
under Diffuse Lighting. Perception, 29:649–660, 2000.

[LFTW05] Hongsong Li, Sing Choong Foo, Kenneth E. Torrance, and Stephen H.
Westin. Automated Three-Axis Gonioreflectometer for Computer
Graphics Applications. In Optical Engineering, page 2006, 2005.

[LLX+01] Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and Heung-Yeung
Shum. Real-Time Texture Synthesis by Patch-Based Sampling. ACM
Trans. Graph., 20(3):127–150, 2001.

[LVJ07] Y. Liu, O. Veksler, and O. Juan. Simulating Classic Mosaics with Graph
Cuts. In EMMCVPR07, pages 55–70, 2007.

[LZ94] M. S. Langer and S. W. Zucker. Shape from Shading on a Cloudy Day.
J. Opt. Soc. Am., 11(2):467–478, 1994.

[MB95] Eric N. Mortensen and William A. Barrett. Intelligent Scissors for Im-
age Composition. In SIGGRAPH ’95: Proceedings of the 22nd annual
Conference on Computer Graphics and Interactive Techniques, pages
191–198, New York, NY, USA, 1995. ACM.

[McC05] Jeffrey J. McConnell. Computer Graphics: Theory Into Practice. Jones
and Bartlett Publishers, Inc., USA, 2005.

[MH80] D. Marr and E. Hildreth. Theory of Edge Detection. Proceedings of the
Royal Society of London. Series B, Biological Sciences, 207(1167):187–
217, 1980.

[N.79] Otsu N. A Threshold Selection Method from Gray-Level Histograms.
IEEE Transactions on Systems, Man and Cybernetics, 9(1):62–66, Jan-
uary 1979.

[ND06] Addy Ngan and Frédo Durand. Statistical Acquisition of Texture Ap-
pearance. In Rendering Techniques 2006: 17th Eurographics Workshop
on Rendering, pages 31–40, Jun. 2006.

55

56 Bibliography

[NFH07] Alfred Nischwitz, Max Fischer, and Peter Haberäcker. Computergrafik
und Bildverarbeitung: Alles für Studium und Praxis. Vieweg und Teub-
ner, 2. edition, Feb. 2007.

[OABB85] J. M. Ogden, E. H. Adelson, J R. Bergen, and P.J. Burt. Pyramid-Based
Computer Graphics, 1985.

[OBM00] Manuel M. Oliveira, Gary Bishop, and David F. McAllister. Relief Tex-
ture Mapping. In SIGGRAPH, pages 359–368, 2000.

[OCS05] Y. Ostrovsky, P. Cavanagh, and P. Sinha. Perceiving Illumination Incon-
sistencies in Scenes. Perception, 34(11):1301–1314, 2005.

[PCF05] J. A. Paterson, D. Claus, and A. W. Fitzgibbon. BRDF and Geome-
try Capture from Extended Inhomogeneous Samples using Flash Pho-
tography. Computer Graphics Forum (Special Eurographics Issue),
24(3):383–391, Sep. 2005.

[PNC05] Fabio Policarpo, Manuel M. O. Neto, and Joao L. D. Comba. Real-Time
Relief Mapping on Arbitrary Polygonal Surfaces. ACM Transaction on
Graphics, 24-3(0730301):935–935, 2005.

[Pot52] R. B. Potts. Some Generalized Order-Disorder Transformations. Proc.
Camb. Phil. Soc., 48:106–109, 1952.

[PzG05] Mahinda P. Pathegama and Özdemir Göl. Edge-End Pixel Extraction
for Edge-Based Image Segmentation. Transactions on Engineering,
2(2):213–216, 2005.

[Rot00] Carsten Rother. A new Approach for Vanishing Point Detection in Ar-
chitectural Environments. In In Proc. 11th British Machine Vision Con-
ference, pages 382–391, 2000.

[RP66] A. Rosenfeld and J. L. Pfaltz. Sequential Operations in Digital Picture
Processing. Journal of the ACM, 13(4):471–494, 1966.

[SM97] Jianbo Shi and Jitendra Malik. Normalized Cuts and Image Segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22:888–905, 1997.

[SS01] Linda G. Shapiro and George C Stockman. Computer Vision. Prentice
Hall, January 2001.

[Wel04] Terry Welsh. Parallax Mapping with Offset Limiting: A PerPixel Ap-
proximation of Uneven Surfaces. Technical report, Infiscape Corp., Jan-
uary 2004.

56

Bibliography 57

[WF06] Slawo Wesolkowski and Paul Fieguth. Hierarchical Region Mean-Based
Image Segmentation. Computer and Robot Vision, Canadian Confer-
ence, 0:30, 2006.

[WHMM06] Lior Wolf, Xiaolei Huang, Ian Martin, and Dimitris Metaxas. Patch-
Based Texture Edges and Segmentation. In In ECCV, 2006.

[WSM99] Arthur R. Weeks, Lloyd J. Sartor, and Harley R. Myler. Histogram Spec-
ification of 24-bit Color Images in the Color Difference (C-Y) Color
Space. Journal of Electronic Imaging, 8(3):290–300, 1999.

[YDMH99] Yizhou Yu, Paul Debevec, Jitendra Malik, and Tim Hawkins. Inverse
Global Illumination: Recovering Reflectance Models of Real Scenes
from Photographs. In SIGGRAPH ’99: Proceedings of the 26th an-
nual conference on Computer graphics and interactive techniques, pages
215–224. ACM Press/Addison-Wesley Publishing Co., 1999.

[Zha06] Y.J. Zhang. Advances in Image and Video Segmentation. IRM Press,
May 2006.

[ZLK06] Yuanjie Zheng, Stephen Lin, and Sing Bing Kang. Single-Image Vi-
gnetting Correction. Computer Vision and Pattern Recognition, IEEE
Computer Society Conference on, 1:461–468, 2006.

[ZTCS99] Ruo Zhang, Ping-Sing Tsai, James E. Cryer, and Mubarak Shah. Shape
from Shading: A Survey. IEEE Trans. Pattern Anal. Mach. Intell.,
21(8):690–706, August 1999.

57

	Contents
	Introduction
	Motivation
	Shape-from-Shading
	Previous Methods
	Shape-from-Shading
	Rendering of Meso-Structure
	Image Segmentation

	Depth Hallucination
	Overview
	Image Acquisition
	Definition of an Image
	Albedo-Map and Diffuse Shading Image
	Depth Estimation
	Gaussian Laplacian Pyramids
	Gaussian Pyramid
	Laplacian Pyramid
	Simple Implementation

	Mathematical Model
	Below-Plane Model
	Above-Plane Model
	Combined Model
	Multiscale Formulation
	Advantages and Disadvantages

	Examples
	Histogram Matching
	Histograms
	Histogram Specification
	Algorithm
	Example

	Image Segmentation
	Motivation
	Definition of Image Segmentation
	Graph-Cut
	Overview
	Graph Construction
	Flow of a Graph
	Maximum Flow and Minimum Cut
	Flow Algorithms
	Energy Functions
	Data Term
	Interaction Term

	Expanding to Multiple Segments
	Summary

	Implementation
	Used Libraries
	Compilation
	Algorithms
	Depth Hallucination
	Graph-Cut Segmentation

	Visualisation
	Relief Mapping

	Evaluation
	Depth Hallucination
	Well Working Examples
	Problems and Limitations
	Reconstruction of Facades
	Performance

	Histogram Matching
	Image Segmentation

	Closing Words
	Bibliography

